Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(II) fragment as an antenna group

Nail M. Shavaleev, Lucy P. Moorcraft, Simon J. A. Pope, Zöe R. Bell, Stephen Faulkner and Michael D. Ward

Supporting information

1. Characterisation data for the dinuclear complexes $[(PPh_3)_2Pt(\mu-pdo)Ln(tta)_3]$ (**Pt-Ln**):

Pt-Nd: yield, 80% Calcd. For NdPtC₇₂H₄₈N₂O₈P₂S₃F₉: C. 49.9; H, 2.8; N, 1.6%. Found: C, 49.9; H, 2.7; N, 1.8%.

Pt-Gd: yield, 75% Calcd. For GdPtC₇₂H₄₈N₂O₈P₂S₃F₉: C. 49.4; H, 2.8; N, 1.6%. Found: C, 49.3; H, 2.6; N, 1.6%.

Pt-Yb: yield, 72% Calcd. For YbPtC₇₂H₄₈N₂O₈P₂S₃F₉: C. 49.0; H, 2.7; N, 1.6%. Found: C, 49.3; H, 2.5; N, 1.7%.

Proton NMR spectrum (400 MHz) of Pt-La in CD₂Cl₂:

2. Luminescence spectra for the dinuclear complexes $[(PPh_3)_2Pt(\mu-pdo)Ln(tta)_3]$ in CH_2Cl_2 solution (Ln = Yb, Nd, Er); spectra are normalised and uncorrected, with $\lambda_{exc} = 520$ nm).

